Finding RB/Rpi-blb1/Rpi-sto1-like sequences in conventionally bred potato varieties

O.Y. Antonova¹, N.S. Klimenko¹, Z.Z. Evdokimova², L.I. Kostina¹, T.A. Gavrilenko¹,²,³

¹ Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
² Leningrad Scientific Research Institute “Belogorka”, Leningrad region, Gatchinsky district, Russia
³ St. Petersburg State University, Biological faculty, St. Petersburg, Russia

The main objectives in potato breeding are increasing yield abilities and improving resistance to numerous pathogens and pests. Among them, the late blight caused by the Phytophthora infestans oomycete is one of the most destructive potato diseases both in Russia and worldwide. Wild relatives of cultivated potato are traditionally used in breeding as the source of valuable R genes conferring resistance to pathogens. Of particular interest are Mexican wild species because Mexico is the centre of origin and diversity of P. infestans and at the same time, it is the centre of potato species diversity. Mexican wild potato species S. bulbocastanum and S. stoloniferum are an important source of the R genes conferring broad-spectrum resistance against various isolates of P. infestans (Rpi-blb1, Rpi-blb2, Rpi-sto1). Recently these genes have been transferred into cultivated potato gene pool using the cisgene approach. At the same time there is a high probability of finding genotypes with the Rpi-sto1 gene (functional homologues of Rpi-blb1) among conventionally bred varieties because for about 40 years S. stoloniferum has been used in breeding as a source of the RY-f and Ry-fst genes of the extreme resistance to the most important viral pathogen PVY. In this study 188 potato varieties bred in Russia and in near-abroad countries were screened for the presence of six gene-specific markers of the RB/Rpi-blb1 = Rpi-sto1 and Rpi-blb2 genes conferring broad-spectrum resistance against P. infestans, and for the markers linked to the RY-fst and Ry-fst genes conferring extreme resistance to PVY. In addition, a marker for detecting male sterile mitochondrial DNA type gamma derived from S. stoloniferum was used. The genotypes selected through the molecular markers were divided into four groups: (A) 13 PVY resistant varieties carrying diagnostic markers of the RY-fst and Ry-fst genes and having sterile mt-type gamma; (B) four varieties possessing mt-type gamma and not having the markers of the R genes introgressed from S. stoloniferum; (C) eight genotypes carrying five gene-specific markers for the RB/Rpi-blb1 = Rpi-sto1; (D) the rest 166 (86.9 %) varieties not possessing any of the diagnostic markers associated with the S. stoloniferum genetic material. The sequences of the Rpi-sto1 and BLB1 F/R-amplicons were identical in all the genotypes of group C and showed respective 99 % and 100 % similarity to the corresponding fragments of the Rpi-sto1 and Rpi-blb1 genes from the GenBank database. Among the genotypes of group C various mt-types were detected, and some of them were male fertile.

Key words: potato; Solanum stoloniferum; marker assisted selection; R genes; RB/Rpi-blb1/Rpi-sto1; male sterility.

Postследовательности, гомологичные участкам гена RB/Rpi-blb1/Rpi-sto1, у сортов картофеля, созданных методами традиционной селекции

O.Y. Антонова¹, Н.С. Клименко¹, З.З. Евдокимова², Л.И. Костина¹, Т.А. Гавриленко¹,²,³

¹ Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (VIR), Санкт-Петербург, Россия
² Ленинградский научно-исследовательский институт сельскохозяйства “Белогорка”, Ленинградская область, Гатчинский район, Россия
³ Санкт-Петербургский государственный университет, биологический факультет, Санкт-Петербург, Россия

Традиционные задачи селекции картофеля – повышение урожайности и устойчивости к многочисленным патогенам и вредителям. Из них наибольший ущерб картофеледоводству как в России, так и за рубежом наносит фитофтороз, вызываемый оомикотом Phytophthora infestans. Дикие виды картофеля используются в селекции в качестве источников R генов устойчивости к патогенам. Особый интерес представляет мексиканские виды, поскольку Мексика – центр происхождения и разнообразия P. infestans и центр разнообразия видов картофеля. Диккие мексиканские виды картофеля S. bulbocastanum и S. stoloniferum являются источниками R генов устойчивости к широкому спектру P. infestans (Rpi-blb1, Rpi-blb2, Rpi-sto1). В последние годы эти гены были интродуцированы в геном культурного картофеля с использованием метаболических генов-мишеней. В то же время высока вероятность выявления генотипов с геном Rpi-sto1 (функциональный гомолог Rpi-blb1) у сортов, созданных методами традиционной селекции, поскольку уже около 40 лет селекционеры используют S. stoloniferum в качестве источника устойчивости к наиболее вредоносному вирусу картофеля – PVY. В настоящей работе проведен молекулярный скрининг 188 сортов картофеля российской селекции и стран ближнего зарубежья с генами устойчивости, интродуцированными в геном культурного картофеля с использованием метаболических генов-мишеней RB/Rpi-blb1, Rpi-sto1 и Rpi-blb2; генотипы, сцепленными с генами Ry-fst и Ry-fst, детерминирующих устойчивость к PVY, и митотическим митополам гамма, ассоциированным с мужской стерильностью S. stoloniferum гибридных. Отобранные в молекулярном скрининге генотипы могут быть разделены на четыре группы: (A) 13 устойчивых к PVY сортов с диагностическими маркерами генов Ry-fst и Ry-fst и со стерильным mt-типом гамма; (B) четыре сорта с mt-типом гамма, не обладающие маркерами R генов устойчивости, интродуцированных от S. stoloniferum; (C) восемь генотипов, у которых были детектированы все пять генетически аналогичных маркеров гена RB/Rpi-blb1/Rpi-sto1; (D) оставшиеся 166 (86.9 %) сортов выбрали у которых не были выявлены маркеры R генов устойчивости S. stoloniferum и митопол
The common potato (Solanum tuberosum L.) is the first non-grain food crop in the world and in Russia. Potato varieties are susceptible to many diseases and pests so the main objectives in potato breeding are increasing yield abilities and resistance to numerous fungal, viral, bacterial pathogens and pests. Among them, late blight caused by the Phytophthora infestans oomycete remains the most destructive disease that decreases potato production both worldwide (Haverkort et al., 2008, 2009, 2016) and in Russia (Elanskij, 2015). To control late blight and prevent yield losses, potato cultivation requires frequent fungicide treatments, e.g. in Northern Europe such treatments are performed from 10 to 15 times a year and up to 25 times – in humid summers (Fact Series, 2014). Growing of potato varieties with durable resistance against late blight is one of the main strategies of reducing the use of chemical fungicides.

Breeding potatoes resistant to P. infestans has been continuing for about 100 years. Various wild potato species have been found to be resistant to late blight and some of them have been actively used in breeding (Hanneman, Bamberg, 1986; Zoteyska et al., 2012). Among them Mexican potatoes are of particular interest because the central regions of Mexico are considered to be a center of genetic diversity both for P. infestans and for wild potato species (Hawkes, 1990; Fry et al., 1993; Goss et al., 2014). Solanum demissum, indigenous to Mexico, served as an initial source of late blight resistance genes (named R1 to R11) in potato breeding. These R genes conferring race-specific resistance against P. infestans were introgressed from S. demissum into the gene pool of S. tuberosum through interspecific crosses and conventional breeding in the first part of the last century (Malcolmson, Black, 1966). However, this race-specific resistance was quickly overcome by specific P. infestans strains (Wasti, 1991; Fry, Goodwin, 1997; Fry, 2008). In the subsequent decades, the efforts of breeders were aimed at a search for new sources of race-non-specific durable resistance against P. infestans that were found in many wild potato species (Ross, 1986). However, breeding of new varieties with race-non-specific resistance is time-consuming and laborious because of polygenic inheritance, as QTLs for this purpose were mapped on all the twelve potato chromosomes (Simko, 2002).

The R genes conferring broad-spectrum resistance against various P. infestans isolates have been found in several Mexican species that are highly resistant to late blight but less easy crossable with cultivated potato in comparison with S. demissum, e.g. broad spectrum resistance genes were identified in Mexican diploid species S. bulbocastanum – the RB gene also known as Rpi-blb1 (Naess et al., 2000; Song et al., 2003; van der Vossen et al., 2003) and the Rpi-blb2 (van der Vossen et al., 2005), both encode CC-NB-LRR proteins (Vleeshouwers et al., 2011). The interspecific incompatibility between S. bulbocastanum and S. tuberosum was overcome using ploidy manipulations, interspecific bridge crosses with the other wild species and subsequent backcrossing of the complex hybrids (Hermes, Ramanna, 1973). As a result of long-term conventional breeding process that lasted for 46 years, the Rpi-blb2 gene from S. bulbocastanum has been introgressed into a common potato gene pool and two late blight resistant varieties carrying this gene – Bionica and Toluca – have been developed (Haverkort et al., 2009). The RB/Rpi-blb1 gene was introgressed into the S. tuberosum genome through somatic hybridization (Helgeson et al., 1998).

The functional homologues of the S. bulbocastanum RB/Rpi-blb1 gene were detected in Mexican allotetraploid species S. stoloniferum (= S. papita, S. polytrichon): Rpi-sto1, Rpi-p1, Rpi-pta1, Rpi-pta2 (Vleeshouwers et al., 2008; Wang et al., 2008; Lokossou et al., 2010). M. Wang with colleagues (2008) suggested that S. bulbocastanum is one of the progenitors of S. stoloniferum.

The RB/Rpi-blb1 and Rpi-blb2 from S. bulbocastanum and Rpi-sto1 from S. stoloniferum were mapped and cloned (Song et al., 2003; van der Vossen et al., 2003, 2005; Vleeshouwers et al., 2008). After that a transgenic approach using genes from crossable species (cigogenesis) was developed to improve late blight resistance in cultivated potato (Haverkort et al., 2009, 2016). Genetically modified (GM) cisgenic potato clones carrying a single Rpi-gene demonstrated only partial resistance to the aggressive isolates of P. infestans, whereas cisgenic GM clones containing Rpi gene combinations had a high level of broad-spectrum resistance (Haverkort et al., 2016). However, cultivation of such resistant genotypes (e.g. of cisgenic Phytophthora-resistant variety ‘Fortuna’ having the Rpi-blb1 and Rpi-blb2 genes) has still been a questionable issue because cisgenic plants remain under GMO regulation in the EU (Haverkort et al., 2016; van Hove, Gillund, 2017). At the same time, conventionally bred varieties Bionica and Toluca with the introgressed Rpi-blb2 gene can be cultivated in the EU without any limitations.

It is interesting to note that S. stoloniferum, a wild Mexican species with functional homologues of the RB/Rpi-blb1 gene, can be directly crossed with cultivated potato (Jackson, Hanneman, 1999), but this wild species has not been actively
involved in a breeding program the directed on broad-spectrum late blight resistance. The efforts of breeders were usually focused on *S. stoloniferum* as a source of extreme resistance to potato virus Y (PVY) to be the most important viral pathogen of cultivated potato (Ross, 1986). Many West-European varieties have been developed based on interspecific hybrids *S. stoloniferum* × *S. tuberosum*. They inherit the *Ry*$_{sto}$ and/or *Rf*$_{sto}$ genes from *S. stoloniferum*, both conferring extreme resistance to PVY (Flis et al., 2005; Song, Schwarzhafner, 2008). According to literature, the gene *Ry*$_{sto}$ has always been associated with mitochondrial type (mt-type) gamma and with maternally inherited male sterility (Song, Schwarzhafner, 2008).

In the Russian Federation are mainly two centers bred potato varieties from interspecific hybrids with *S. stoloniferum*. These are (1) A.G. Lorkh All-Russian Potato Research Institute (VNIIKH) located in Moscow region, whose efforts are focused on developing PVY resistant material and (2) Lenin-Grad Scientific Research Institute “Belogorka” (LenNIISKh ‘Belogorka’) located in north-west region of Russia whose efforts are concentrated on developing of late blight resistant material. Recently, we screened the 39 cultivars and breeding clones developed in the LenNIISKh ‘Belogorka’ and selected five genotypes carrying gene-specific markers for *RB/Rpi-blb1 = Rpi-sto1*. three of these genotypes were bred up to the variety level (Gavrilenko et al., 2018).

The objectives of the present study were to screen a wider subset of 188 potato varieties with the markers of the *R* genes originating from *S. stoloniferum* and to provide evidences of the presence of *RB/Rpi-blb1 = Rpi-sto1*-like sequences in the selected varieties and breeding clones.

Material

The one hundred eighty five varieties chosen for this study were obtained from the national potato germplasm collection maintained at VIR. Special attention was paid to the varieties having *S. stoloniferum* hybrids in their pedigrees. The pedigree records were received from different sources (Simakov et al., 2007; Yashina et al., 2010; Russian Varieties..., 2011; Kostina, et al., 2016; Potatoes..., 2016). According to the published data *S. stoloniferum* was involved in the pedigrees of 28 varieties (their names are underlined – see below); most of them show extreme or high resistance to PVY. It was also possible that *S. stoloniferum* had participated in the origin of more than these 28 varieties because many cultivars had unknown ancestors or their pedigree records indicated interspecific hybrids of unknown origin. The following cultivars were subjected to molecular screening: Aksamit, Al’pinist, Alena, Alisa, Ametist, Amur, Antoshtka, Arhideja, Arlekin, Avora, Babushka, Barin, Baron, Belosnezhka, Beluha, Bezhicki, Bol’shevik, Bol’vinskij, Borodjanskij rosvojy, Brat-2, Bravo, Brjanskaja novinka, Brjanskij delikates, Brjanskij krasnij, Brjanskij na-dzhnyj, Brjanskij ranijn, Bronnickij, Buket, Chaja, Chajka, Divo, Doncovskij, Druzhnyj, Falenskij, Fermer, Filatovskij, Fioletovij, Fokinskij, Garant, Gart, Golubizna, Gorizont, Gor-janka, Gornoural’skij, Granat, Gubernator, Hibinskih ranijnj, Il’inskih, Imandra, Impala, Irbitskij, Iskra, Javan, Jeflekt, Jener-gija, Jubilej Zhukova, Jubilejnij Osetji, Jupiter, Kabardinskij, Kalinka, Kamenskij, Kameraz, Katjusha, Kemervochchan, Kemervochchan, Kolobok, Kolpashevskij, Komsomolec 20, Korenevskij, Kormilec, Korona, Kortni, Kravatica, Krasnaja gorka, Krasnaja roza, Krasnaja zarya, Krasnoufimskij, Krepysh, Kristall, Kustarevskij, Kuznechnaja, Ladozhskij, Lajmdota, Lakomka, Lasunak, Lazar’, Lazurit, Leker’, Lider, Ljubava, Ljus, Lorh, Loshchik, Lugovskoj, Lybìd’, Manifest, Mats, Matushka, Maugli, Meteor, Moskvoreckij, Murmanskij, Munjsinik, Nadezhda, Nakra, Na’l’chiksik, Naroch’, Nart-1, Narymka, Nauka, Nesterovskij, Nezabudka, Nikuliniskij, Odisej, Ognivo, Oktyabrenok, Olimp, Parus, Pobeda, Pogarskij, Prestizh, Pribrezhnij, Priekul’skij ranijnj, Prigozhij 2, Pri2 (Primorskij), Priobskij, Prizer, Prilozok, Ramzaj, Rassvet, Resurs, Rezerv, Rjabinsushka, Romashka, Rosinka, Rossijanka, Runjanka, Rusalka, Rusich, Sambo, Saprykinskij, Sarovskij, Sentjabr’, Severjanin, Shanman, Shurmsinskij 2, Sineva, Sintez, Skarb, Skoroplodnyj, Smena, Sokol’skij, Solnysko, Start, Svenskij, Svetjachok, Tango, Temp, Teshha, Tomich, Udacha, Ukrainskij rosvojy, Uspeh, Utenok, Varmas, Varsna, Vektor belorusssikj, Veselovskij 2-4, Veteran, Virazh, Viza, Vjatka, Volzhskij, Vympel, Zagadka, Zarevo, Zaural’skij, Zdabytak, Zhavoronok, Zhigulevskij, Zhibica, Zhukovskij ranijnj, Zol’skij, Zvezdochka.

One hundred eighty five varieties of the studied subset had been developed and released by different Russian public institutions, and breeding stations of various geographical locations and in neighboring countries. This subset did not include the 33 varieties bred in LenNIISKh ‘Belogorka’, since the results of their molecular screening had already been published (Gavrilenko et al., 2018).

The analyzed subset also included five additional genotypes selected earlier for having three gene-specific markers – *Rpi-sto1*, 1/1′, *BLB1F/R* (varieties Sudarynya, Evraziya, Baltij-skij and breeding clones 1604/16, 1101/10) (Gavrilenko et al., 2018). In the present study these five additional genotypes were involved into sequence analysis and were screened for gene-specific markers covering the other regions of the target gene *RB/Rpi-blb1 = Rpi-sto1*. These three varieties and two breeding clones originated from the *S. stoloniferum* hybrids, and they all were bred in LenNIISKh ‘Belogorka’ (Gavrilenko et al., 2018). New perspective breeding clone 360/28 of the same origin was also involved in molecular screening. In total experimental subset included 191 genotypes (188 varieties and three breeding clones).

The highly late blight resistant genotype of wild species *S. stoloniferum* (seedling from accession PI 205522) with the diagnostic markers of the *Rpi-sto1*, *Ry*$_{sto}$, *Rf*$_{sto}$ genes (Levy et al., 2017) and variety Toluca with the *Rpi-blb2* gene were used as positive controls.

Methods

DNA isolation and marker assisted selection (MAS). Genomic DNA was isolated from young leaves of the field grown plants following the modified CTAB method (Gavrilenko et al., 2013). Six gene-specific primers for the *Rpi-sto1*, *RB*, *Rpi-blb1*, and *Rpi-blb2* genes developed by different authors (Table 1) were used in this study. This set included one primer pair 1/1′ specific for the *Rpi-blb1* functional allele (Colton et al., 2006). The location of *RB/Rpi-blb1 = Rpi-sto1* gene-specific primers is indicated in the schematic diagram (Fig. 1).

We also used STS marker YES3-3A and CAPS marker GP122-406 linked with genes *Ry*$_{sto}$ and *Rf*$_{sto}$, respectively. The markers had been earlier validated for MAS of West-
Finding RB/Rpi-blb1/Rpi-sto1-like sequences in conventionally bred potato varieties
O.Y. Antonova, N.S. Klimenko
Z.Z. Evdokimova, L.I. Kostina, T.A. Gavrilenko

Wang et al., 2008
Rpi-sto1-R
Target resistance
F: GAATCAAATTATCCACCCCAACTTTTAAAT
R: TAACTCAAGCGGAATAACCC
-427
241
1

Colton et al., 2006
Rpi-sto1
F: ACCAAGGCCACAAGATTCTC
-406
2342
1

Pankin et al., 2011
Rpi-blb1
F: CAATTGGCTCCCGACTATCTACAG
-3162
3143
»

Flis et al., 2005;
AAT AAT CTT CCA AGC GGA GAG
3592
821
1107

Song, Schwarzfischer, 2008
rps 10
RB-629-R
BLB1 F/R
517
1519

Zhu et al., 2012
Ry-f
gene and location of five gene-specific primers used in this study: Rpi-sto1, BLB1 F/R, 1/1', 517/1519, 890

Markers linked to the genes conferring extreme resistance to PVY originating from S. stoloniferum

Table 1. Markers of R genes and mt-types used in this study

<table>
<thead>
<tr>
<th>No.</th>
<th>Target resistance gene (chromosome)</th>
<th>Name of the DNA marker</th>
<th>Primer sequences (forward and reverse primer)</th>
<th>Tm, °C</th>
<th>PCR product size, bp</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rpi-sto1 (VII)</td>
<td>Rpi-sto1</td>
<td>F: ACCAAGGCCACAAGATTCTC
R: CTCGGGGTTCGGTTAATAAC</td>
<td>65</td>
<td>890</td>
<td>Zhu et al., 2012</td>
</tr>
<tr>
<td>2</td>
<td>RB (VII)</td>
<td>1/1'</td>
<td>F: CACGGATGCCTTTTCTGAC
R: ACATTTAGTTTTAGCCTT</td>
<td>50</td>
<td>213</td>
<td>Colton et al., 2006</td>
</tr>
<tr>
<td>3</td>
<td>Rpi-blb1 (VII)</td>
<td>BLB1 F/R</td>
<td>F: AACCCTTGTTCGCTTCCTG
R: GTCAAGAAAAGGACACTCTG</td>
<td>58</td>
<td>821</td>
<td>Wang et al., 2008</td>
</tr>
<tr>
<td>4</td>
<td>Rpi-blb1 (VII)</td>
<td>517/1519</td>
<td>F: CATTCCAACTAGCATCCTTGG
R: TATTCAGATCGAAAGTACAAC</td>
<td>58</td>
<td>651</td>
<td>»</td>
</tr>
<tr>
<td>5</td>
<td>RB/Rpi-blb1 (VII)</td>
<td>RB-629</td>
<td>F: GAATCAATTATCCACACACCTTTAAT
R: CAAGTATTGGAAGGACATGGAAGT</td>
<td>65</td>
<td>629</td>
<td>Pankin et al., 2011</td>
</tr>
<tr>
<td>6</td>
<td>Rpi-blb2 (VI)</td>
<td>Blb2F/R</td>
<td>F: GGAGCTGCGAATGGCATTCATCC
R: AGACAGGATGTCCTCTAATG</td>
<td>58</td>
<td>773</td>
<td>Lokossou et al., 2010</td>
</tr>
</tbody>
</table>

Markers used for detection of different mt-types

<table>
<thead>
<tr>
<th>No.</th>
<th>Gene-specific markers for the Rpi-sto1, RB, Rpi-blb1, Rpi-blb2</th>
<th>Primer sequences (forward and reverse primer)</th>
<th>Tm, °C</th>
<th>PCR product size, bp</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Ry-sto (XII)</td>
<td>YES3-3A</td>
<td>F: TAATCAGAGGCGGATAAACCC
R: ATATCGGTGTTATTCAGGTTT</td>
<td>55</td>
<td>341</td>
</tr>
<tr>
<td>8</td>
<td>Ry-fsto (XII)</td>
<td>GP122-406/EcoRV</td>
<td>F: CAATTGGCTCCGACTTACATCACAG
R: ACATGGACACCTCCTCTCACAG</td>
<td>52</td>
<td>406</td>
</tr>
<tr>
<td>9</td>
<td>rps 10 locus of mtDNA</td>
<td>ALM_4/ALM_5</td>
<td>AAT AAT CCT CCA AGC GGA GAG
AAG ACT CGT GAT TCA GGC AAT</td>
<td>55</td>
<td>alpha – 2400, beta – 1600, gamma – “–”</td>
</tr>
</tbody>
</table>

Fig. 1. A structure of the RB/Rpi-blb1 = Rpi-sto1 gene and location of five gene-specific primers used in this study: Rpi-sto1, BLB1 F/R, 1/1’, 517/1519, RB-629.

European PVY resistant varieties (Song, Schwarzfischer, 2008; Valkonen et al., 2008). The different mitochondrial DNA types (mt-types) were identified with the specific primers ALM_4/ALM_5 developed by A. Lössl et al. (2000) (see Table 1).

Each PCR reaction was repeated at least three times. In the case of positive results with markers for gene RB/Rpi-blb1 = Rpi-sto1, MAS was repeated with independently extracted DNA samples. A reaction mixture with water instead of DNA template was used as a negative control. PCR products were separated by electrophoresis in 2.0 % agarose gels, stained with ethidium bromide and visualized in UV light.

Sequence analysis. The Rpi-sto1- and BLB1 F/R-amplicons from the genotypes selected in MAS were purified with the Cleanup Standard Kit (Evrogen, #BC022, http://evrogen.ru) and sequenced in both directions on 24-capillary 3500xL Genetic Analyzer (Applied Biosystems) using equipment of Core Centrum “Genomic Technologies, Proteomics and Cell Biology” in ARRIAM. Alignment of nucleotide sequences and their analysis were conducted using software Unipro UGENE.
version 1.29.0 (Okonechnikov et al., 2012) and BioEdit Version 7.1.9 (Hall, 1999). The obtained sequences were compared against the ones of the NCBI nucleotide database (http://www.ncbi.nlm.nih.gov/).

Results

One hundred ninety one genotypes of the analyzed subset were screened using the DNA markers associated with the \(R_{y}\text{-}sto\), \(Ry\text{-}f\text{-}sto\), RB/Rpi-blb1 = Rpi-sto1 genes and with mt-type gamma originating from \(S.\text{stoloniferum}\). Based on the screening results this subset was divided into four groups A–D (Table 2).

Table 2. Molecular screening results in a subset of 191 accessions

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of variety</th>
<th>Presence (1) or absence (0) of the diagnostic markers associated with the genetic material introgressed from (S.\text{stoloniferum})</th>
<th>mt-type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Ry\text{-}f\text{-}sto)</td>
<td>(Ry\text{-}sto)</td>
<td>RB/Rpi-blb1/Rpi-sto1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Brjanskij krasnyj</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Il’inskij</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Jubilej Zhukova</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Kolobok</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Korona</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Meteor</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Moskvoreckij</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Nakra</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Olimp</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Pogarskij</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Resurs</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Sokol’skij</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Vektar belorussskij</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Group A: varieties with PVY – resistance genes markers and the mt-type gamma inherited from \(S.\text{stoloniferum}\)

Group B: varieties with mt-type gamma with no diagnostic \(R\) genes markers

Group C: varieties and breeding clones with the gene-specific markers of RB/Rpi-blb1 = Rpi-sto1

Group D: varieties with no DNA markers associated either with \(R\) genes or the mt-type introgressed from \(S.\text{stoloniferum}\).

The rest 166 of 188 varieties of the studied subset

Control accession

* Taken from (Gavrilenko et al., 2018).
Finding RB/Rpi-blb1/Rpi-sto1-like sequences in conventionally bred potato varieties

O.Y. Antonova, N.S. Klimenko
Z.Z. Evdokimova, L.I. Kostina, T.A. Gavrilenko

PCR amplification of 629-bp and 651-bp fragments using RB-bL

Within the screened subset these markers

M – molecular marker 100 bp + 1.5 Kb + 3 Kb DNA Ladder.

Varieties and breeding clones: 1 – Il’inskij; 2 – Meteor; 3 – Nakra; 4 – Pogarskij; 5 – Avrora; 6 – 3602/28; 7 – Ognivo; 8 – sto, PI 205522. M – molecular marker 100 bp + 1.5 Kb + 3 Kb DNA Ladder.

Fig. 2. PCR amplification of 821-bp, 890-bp, 213-bp fragments using gene-specific primers: BLB1F/R (21/1′).

Golubizna; – c; Nakra; – a; Rpi–sto1 – Pogarskij; b

– M – molecular marker 100 bp + 1.5 Kb + 3 Kb DNA Ladder.

The identified variant of the nucleotide sequence of Rpi-blb1 = Rpi-sto1 was deposited in the GenBank database: (AY426259.1). Both reference sequences correspond to the functional alleles (van der Vossen et al., 2003; Vleeshouwers et al., 2008). In comparison with corresponding region in reference sequence EU884421, three single-nucleotide po-

Group B included four varieties (Brjanskaja novinka, Fokinskij, Odissej, Zdabytak) that had no R-gene diagnostic markers (see Table 2). At the same time, all these varieties had the sterile mt-type gamma which derived from S. stoloniferum (Lössl et al., 2000). According to the pedigree records only one variety of group B – Brjanskaja novinka – had originated from the S. stoloniferum hybrids.

As group C we marked the genotypes with diagnostic fragments generated by five gene-specific markers of the RB/Rpi-blb1 = Rpi-sto1. Within the screened subset these markers were found in two varieties: Avrora, Ognivo and in breeding clone 3602/28 (Fig. 2 and 3; Table 2). The breeding material from LeninNIISKh ‘Belogorka’ selected earlier for the presence of three gene-specific markers (Rpi-sto1, BLB1F/R and 1/1′) (Gavrilenko et al., 2018) also was MAS-positive: two additional markers 517/1519 and RB-629 covering different regions of the target gene RB/Rpi-blb1 = Rpi-sto1 were detected in varieties Baltijskij, Evraziya, Sudarynya (see Fig. 3) and in breeding clones 1101/10 and 1604/16. As a result, group C included eight genotypes (five varieties and three breeding clones) which all were MAS-positive for the five gene-specific markers (BLB1F/R, 1/1′, 517/1519, RB-629, Rpi-sto1) of RB/Rpi-blb1 = Rpi-sto1 homologues (see Table 2).

The Rpi-blb2 diagnostic marker was detected in control variety Toluca but was not found in the analyzed subset including the control accession of S. stoloniferum PI 205522.

Group D included the most (160 or 86.9 %) varieties of the analyzed subset, which were MAS-negative for all markers associated with R genes from S. stoloniferum (see Table 2). Genotypes with mt-type gamma were also not found in this group. Eighty two varieties (49.4 %) of this group possessed mt-type alpha and 84 (50.6 %) – mt-type beta (see Table 2). It should be mentioned that several accessions of group D had the S. stoloniferum-hybrids in their pedigree records (see the Material part), e. g. there were seven cultivars extremely resistant to PVY (Brjanskij rannij, Effekt, Golubizna, Zhigulevskij, Ramzaj, Skoroplodnyi, Veteran) which had originated from self-fertile hybrid F2Bn of S. stoloniferum (Simakov et al., 2007; Yashina, 2010).

Seven varieties from the analyzed subset had been previously screened for marker GP122_564 of the R-locus (Pavlyuchuk et al., 2013) and eight varieties – for YES3-3A marker of the R-locus gene (Biryukova et al., 2015); in the both cases, material from patent holder institutions had been used. The results obtained at present study fully confirmed the data for these 15 varieties.

All the genotypes of group C, each carrying five gene-specific markers for the RB/Rpi-blb1 = Rpi-sto1, were selected for further sequence analysis.

Sequence analysis

The bands amplified by the Rpi-sto1 primer pairs were purified and sequenced from the eight genotypes of group C: five varieties (Avrora, Baltijskij, Evraziya, Sudarynya, Ognivo), three breeding clones (1101/10, 1604/16, 3602/28) and control genotype S. stoloniferum PI205522. The nucleotide sequences data obtained from the partial CC-region amplified with the Rpi-sto1 primer pairs were identical in all the nine genotypes (Fig. 4).

The results obtained at present study fully confirmed the data for these 15 varieties.
Single-nucleotide polymorphisms in the Rpi-sto1-amplicon sequences from eight MAS-positive genotypes of group C

Table 3. Single-nucleotide polymorphisms in the Rpi-sto1-amplicon sequences from eight MAS-positive genotypes of group C compared to the corresponding region of reference sequences Rpi-sto1 (AY426259.1) and Rpi-blb1 (EU884421)

<table>
<thead>
<tr>
<th>SNP position in sequence AY426259.1</th>
<th>Reference sequences (GenBank #)</th>
<th>Rpi-blb1 (AY426259.1)</th>
<th>Rpi-sto1 (EU884421)</th>
<th>8 genotypes selected in MAS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>315</td>
<td></td>
<td>C</td>
<td>C</td>
<td>5 varieties (Avrora, Baltijskij, Evraziya, Ognivio, Sudarynja)</td>
</tr>
</tbody>
</table>
| 538 | | T | A | 3 breeding clones (1101/10, 1604/16, 3602/28) and control – S. stoloni
| 631 | | T | C | ferum PI 205522 |
| 975 | | G | A | |

Fig. 4. Alignment of the Rpi-sto1-amplicon sequences from the eight genotypes of group C to the corresponding region of reference sequences (AY426259.1 and EU884421).

Varieties (5): Avrora, Baltijskij, Evraziya, Ognivio, Sudarynja; breeding clones (3): 1101/10, 1604/16, 3602/28. The ovals indicate the SNP-positions which correspond to the sites 315, 538, 631, 975 in the reference sequences.

lymorphisms were detected in the analyzed genotypes: one C→T – in the first exon at site 315 and two SNPs – in the intron part at sites: 631 (C→T) and 975 (A→G) (Table 3, Fig. 4).

Comparison with S. bulbocastanum reference sequence AY426259.1 revealed the same 1-bp substitution in the coding region at site 315 and one SNP – in the intron at site 538 (see Fig. 4, Table 3). Single nucleotide change at position 315 in the first exon resulted in synonymous codon substitution (GTC→GTT) that did not alter the encoded amino acid valine.

The amplicons generated by primer pair BLB1F/R from the partial LRR region were sequenced from control genotype S. stoloni
ferum PI 205522, varieties Avrora, Ognivio,
and breeding clone 3602/28. The sequences of BLB1/R ampiclons gave identity score 100 % to a corresponding partial LRR region in both reference sequences EU884421 and AY426259.1 and they were identical to the BLB1/R fragment sequences from varieties Baltijskij, Evraziya, Sudarynya and breeding clones 1101/10, 1604/16 which had been analyzed earlier (Gavrilenko et al., 2018).

Thus, all the genotypes of group C had the same variant of the RB/Rpi-bbl1 = Rpi-sto1-like sequences to be identical to the corresponding haplotype of S. stoloniferum PI 205522.

The sequences of the Rpi-sto1- and Rpi-bbl1-PCR fragments were submitted to GenBank and are available under the accession numbers: MH518315, MH062177 (cv. Sudarynya); MH518316, MH062178 (cv. Evraziya); MH521008 (cv. Baltijskij).

Discussion
Wild Mexican species S. stoloniferum is an important source of \(R \) genes for extreme resistance to PVY and for durable resistance against late blight as well as for unfavorable abiotic stresses, but the interspecific hybrids with this species are often male sterile that complicate conventional breeding (Ross, 1986; Ortiz, 1998). According to literature, many Western European varieties created by breeders in Germany, Holland and Poland through introgressive hybridization with \(S. \) stoloniferum, carry \(R_y_{sto} \) and/or \(R_y-f_{sto} \) genes conferring extreme resistance to PVY (Fiis et al., 2005; Song, Schwarzfischer, 2008). Varieties with the \(R_y_{sto} \) gene show male sterility associated with mt-type gamma. This is due to the fact that these European varieties originated from a few accessions of \(S. \) stoloniferum which had been used in initial interspecific crosses as a female parent. The varieties and breeding clones developed from such interspecific hybrids inherited both the valuable \(R_y_{sto} \) gene and male sterile mt-type gamma (Lössl et al., 2000; Song, Schwarzfischer, 2008; Sanetomo, Gebhardt, 2015). Western European varieties have never been screened for the presence of \(R_y \) genes, since the efforts of breeders were aimed at selection of PVY resistant material. An exception is our recent work in which a number of extremely resistant to PVY German varieties (Forelle, Kuba, Kuras, Maxi, Bettina, Amado, Solara) carrying \(R_y_{sto} \) and mt-type gamma (Song, Schwarzfischer, 2008) were screened for the Rpi-sto1 and BLB1/R markers of the RB/Rpi-bbl1 = Rpi-sto1 gene, and none of these varieties were MAS-positive (Gavrilenko et al., 2018).

Similar results have been obtained at the present study with PVY resistant domestic varieties from group A carrying simultaneously the markers of the \(R_y_{sto} \) and \(R_y-f_{sto} \) genes. Eleven of the thirteen varieties were bred in VNIKhK (Moscow region) based on the common sources derived from the Hungarian \(S. \) stoloniferum hybrid exhibiting extreme resistance to PVY (Simakov et al., 2007; Yashina, 2010). The hybrid maternally transferred its mt-type gamma to the breeding progenies. Cultivar Nakra from the group A had in its pedigree German variety Bison carrying the \(R_y_{sto} \) gene and mt-type gamma as its female parent (Song, Schwarzfischer, 2008). The varieties of group A did not have the diagnostic markers of the RB/Rpi-bbl1 = Rpi-sto1 conferring broad-spectrum late blight resistance. It was obvious that in a breeding process aimed at the selection of PVY resistant genotypes with \(R_y_{sto} \) and/or \(R_y-f_{sto} \) genes (both localized on chromosome XII), the other alien \(S. \) stoloniferum chromosomes (for example, VIII and VI, in which the RB/Rpi-bbl1 = Rpi-sto1 and Rpi-bbl2 genes were mapped as well) would be lost.

The objective of creating varieties with high field resistance to late blight has been a priority for breeders from the north-western part of Russia, because in this region the weather conditions – moderate temperatures and high humidity – contribute to late blight development and often lead to epiphytoses. Seven of the eight selected in the MAS genotypes of group C having gene-specific markers for RB/Rpi-bbl1 = = Rpi-sto1 were developed by breeders from the North-Western region of Russia – LenNIISKh ‘Belogorka’ (Sudarynya, Evraziya, Baltijskij, 1101/10, 1604/16, 3602/28) and from the Vsevolozhskaya breeding station (Avrora). The patent holder of variety Ognivo is the Falenskaja breeding station located in the central-eastern part of European Russia.

The selected varieties and breeding clones from LenNIISKh ‘Belogorka’ grown without fungicide applications have been tested in the field trials for several years including epiphytotic seasons. The high level of foliar resistance to late blight was reported for Sudarynya, Baltijskij (Gavrilenko et al., 2018) and for 3602/28 (Evdokimova, not published). The Medium to low levels of field resistance was registered for Evraziya, Avrora and Ognivo (Simakov et al., 2009). At the same time all the genotypes of group C (Avrora, Baltijskij, Evraziya, Sudarynya, Ognivo, 1101/10, 1604/16, 3602/28) had an identical variant of the RB/Rpi-bbl1 = Rpi-sto1-like sequences with 99 % similarity to the corresponding regions of the Rpi-sto1 and the Rpi-bbl1 genes from the Genbank database. These six genotypes from LenNIISKh ‘Belogorka’ had similar origin – they all derived from the same hybrid 8889/3 (S. demissum- S. stoloniferum-S. andigenum) (Gavrilenko et al., 2018). The pedigree of variety Avrora is unknown as well as the pedigree of Ognivo hybrids. The differences in the level of their late blight resistance can be influenced by the number of copies of resistance gene(s) or by gene interaction and genetic background. Further research is required to study the late blight resistance types in the genotypes from group C.

The undoubted success of breeders has been creation of the male fertile breeding material derived from the \(S. \) stoloniferum hybids. The selected varieties and breeding clones of group C bred in LenNIISKh ‘Belogorka’ had originated from the same male fertile hybrid 8889/3. This hybrid was an effective pollinator and it had been always used in crosses as a male parent (Gavrilenko et al., 2018). Various mt-types in the descendants of hybrid 8889/3 were determined by the different female parents used in crosses. As a result, within the selected breeding material of group C there were male fertile genotypes: cultivar Baltijskij (mt-type beta), breeding clone 1101/10 (mt-type alpha) and genotypes with mt-type gamma exhibiting male sterility (Evraziya, Sudarynya, 1604/16). Varieties Aurora and Ognivo selected in the present study both had mt-type beta, similar to cultivar Baltijsky from LenNIISKh ‘Belogorka’ (see Table 2). Varieties Avrora and Baltijsky are known as effective pollinators. Recently N. Zotejeva et al. (2017) have selected male fertile \(S. \) stoloniferum hybids with mt-type alpha and shown the possibility of pyramiding \(R \) genes from different wild Mexican species in breeding material.

As it has been mentioned before two conventionally bred varieties (Toluca and Bionica) possess the Rpi-bbl2 gene in-
trogressed from *S. bulbocastanum* to common potato for a 46-year period (Haverkort et al., 2009). Additionally, the *Rpi-hlb2* homolog has been detected in Hungarian cultivar White Lady (Hajianfar et al., 2016). The present paper represents a first report of finding the *RR/Rpi-hlb1 = Rpi-sto1*-like sequences in conventional bred varieties. With further investigation of late blight resistant types, co-segregation and expression analysis, the selected breeding material of group C might be used for gene pyramiding through traditional breeding methodologies.

Acknowledgements

The study was supported by the RSF grant (project No. 16-16-04125).

The authors are grateful to Dr. Alexandr Ermishin (Institute of Genetics and Cytology, Belarusian National Academy of Science, Republic of Belarus) for providing an *in vitro* clone of selected genotype *S. stoloniferum* PI 205522 and to Dr. Ramona Thieme (Julius Kühn-Institute, Germany) for the DNA sample of variety Toluca.

Growing of potato plants in VIR field Genbank is supported by the VIR project No. 0662-2018-0005.

Three varieties and three breeding clones from group C were bred in LenNIISKH ‘Belogorka’ under State Task # 007-00471-18-00.

Conflict of interest

The authors declare no conflict of interest.

References

Finding RB/Rpi-blb1/Rpi-sto1-like sequences in conventionally bred potato varieties

O.Y. Antonova, N.S. Klimenko
Z.Z. Evdokimova, L.I. Kostina, T.A. Gavrilenko

